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A previously-given method f o r  deriving uniformly valid 

perturbation series f o r  the Klein-Cordon equation with a 

“small” nonlinear term i s  generalized t o  include situations 

i n  which the lowest order solution is  not restricted t o  be 

a monochroanstic wave. 4Q- 



I. MTRODUCTION 

It i s  the purpose of t h i s  paper t o  present a general method 

f o r  developing well-behaved perturbation expansions i n  E f o r  the 

Klein-Gordon equation with a small nonlinear term: 

where F is  some arbi t rary function of f,  a f / a t ,  and af/ax. 

Both f and F are real. For a=O, the solution t o  ( la)  i s  easily given 

as a Fourier se r ies  o r  integral; however, a straightforwarU attempt 

t o  expand i n  powers of E about the E = 0 solution leads t o  

secular (ice., t or  x proportional) terms i n  the corrections t o  f ,  

making more refined methods necessary, Such an expansion f o r  J3q. (la) 

has recently been givenL, adapting the Krylov-Bogolyubov-Mitropolskii 

techniques of nonlinear mechanics 2’3. However, the treatment of reference 1 

(which was designed fo r  a specific plasma problem) suffers  from one rather 

severe l imitation on the zeroth order solution: only a monochromatic wave 

led t o  manageable equations i n  the higher orders. 

Here, t h i s  l imitation is removed, and the treatment of reference 1 

i s  generalized t o  include a l l  si tuations i n  which the zeroth order 

i s  expressible as a Fourier s e r i e s  which is summed over a discrete  

spectrum of frequencies. The res t r ic t ion  t o  a discrete  spectrum does not 

eliminate any interest ing phenomena; the continuous spectrum case 

actual ly  appears less pathological than the discrete  one. - 
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It turns out to  be easier t o  work i n  the characterist ic 

coordinates rather than x and t. Therefore, i n  See. 11, the method 

is developed e n t i r e l y  i n  these coordinates. In  See. 111, the role 

of boundary conditions i s  discussed, and two simple examples are 

treated in  Sec. IV. 

In the in te res t s  of simplicity, we go only t o  0 ( E )  i n  t h i s  

paper, though nothing conceptually new is  involved i n  going t o  higher 

order. Also f o r  simplicity, we confine uurselves t o  very simple forms 

f o r  F, f o r  the F ' s  which occur i n  problems of genuine physical interest 

seem always t o  generate so much algebra that an understanding of the method 

becomes unnecessarily d i f f icu l t .  

11. THE MEX'HOD 

The substitutions E = t + x/c, q = t - x/c, A2 = 4 A 2 ,  F = 4 yj 
reduce ( la)  t o  the form 

W e  seek a solution t o  (lb) of the form 



I 
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w h e r e  "a" and 'I J, 

and phases $(K,L). 

'I stand symbolically f o r  a l l  the amplitudes a(K,L) 

W e  must take some pains t o  identify the labels K,L; to  do t h i s  

requires several steps e 

( i )  We introduce an enumerable sequence of two-component basic vectors, 

(k. ,L ), tbc  CCmpWlent5 of which sa t i s fy  
J J  

kjej = A2 a l l  j. 

The allowed values of k or  

conditions, in a way that need not concern us yet. 

w i l l  always be determined by boundary 
3 3 

( i i )  The notation (K,L) means the derived vector 

( K & )  Ill (kl,gl) + n2 (k2,a2) + o b 0  + % (%SEN)' 

w h e r e  "1, 9, . . ., nN are any collection of integers, positive, negative, 

o r  zero. Clearly, the basic vectors are also derived vectors. 

( i i i )  I f  

and 

then (K,L) is regarded as the same vector as (K', L') if  and only if  

(K',L/) = 



c 
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( i v )  With each basic vector (k ) there is  associated a basic phase $(k ) 

(v) 
3 ' 5  J 

For the derived vector (K,L), the phase #' (K,L) is  defined bY 

( v i )  For the basic phases + (k ), there is assumed t o  ex is t  an e w s i o n  of J9 aJ 
the form 

J J  
where the coefficients C depend only upon the amplitudes, but 

remain otherwise unspecified, as  yet. The means higher powers of E 

These statements specify the kind of quantity over which the 

summations 1 are t o  be carried out. Clearly, the #' (K,L) also 

possess expansions of a.form similar t o  (3). By the symbol k, we shall 
K'L 

mean the numerical value of nlkl + n& + ... + YN, and by E , the 

numerical value of n l a l  + %Q + ... + %a3. ThUS9 (K,L) is  a basic vector 

if and only if  ka = A2, but d i f fe ren t  basic vectors may have the same value 

of k and 8 .  
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To f i n i s h  specifying the sor t  of solution (2) that we are  seeking, 

we assume for  the a(K,L) expansions of the form 

and note that (v) and ( v i )  imply that f o r  the derived phases, 

It i s  no loss of generality t o  assume that a (K,L), JI (K,L) are 

real, and that 

a (K,L) = a (-K, -L), 

& (a) = A-K,-L (a>, 

% (a) = B-K,-L (a), 

(a) 
3 J  , 

JI(K,L)= - $(-IC, - L). 
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For the solution to be consistent for L = 0, we require that 

a (K,L) = 0 (e 1, # A2, (7) 

so that if (2) is written as 

then f ( O )  may be unambiguously written as 

With this set of notations, and for any 3 which is  expandable 

about zero in f ,  a f /ag  , af/arl , we may always write 

where the FKL (a) are known functions of the amplitudes which satisfy, 

for 3” real, 

FKL (a) = F -K, * -L (a) 
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Using as. (2) through ( 9 )  i n  Eq. (lb), we get, upon noting 

that the zeroth order coeff ic ient  vanishes ident ica l ly  and equating 

coeff ic ients  of E t  

then (ll) becomes a d i f f e r e n t i a l  equation fo r  VI: 
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-tion (1.2) has a secularity free solution for vl of the 

f o m  

if and only if 

for all (k P ). 

as to  the values 
3’ 3 Note that nowhere have we been required to  commit ourselves 

% a ; we are free to choose ’them to  

satisfy (13). Only in this way can we avoid E or n proportional terms in  VI.. 

Recalling (7)y it is clear that the only a (K,L) which contribute 

to the right hand side of (13) are the a (k ,11 ). 

imaginary p a r t s  of the left  and right hand sides of (13), 

Equating real and 
3 3  
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One consequence of (14) and (4) i s  worth noting right away, 

i n  connection with the closure problem: we can never have, simul- 

taneously, a (k  ,a  ) = o and Fk (a)  # o f o r  any j .  Thus a n  the 

various E = 0 normal modes of the system, i f  coupled by the 7 ,  
must be excited t o  0 (1). This leaves us with two possibi l i t ies :  

3 3  2 

the subset of the basic vectors,for which 

is  e i ther  f in i t e  or inf ini te .  Naturally, the fonner case has many 

more calculational possibi l i t ies .  The la t ter  case i s  calculable 

when two circumstances happen t o  ex i s t  

It i s  regrettable that more satisfying general statements about when 

it i s  possible t o  achieve closure among the (k ,a ) cannot be made. This is due 

t o  the very general poss ib i l i t i es  f o r  T ;  t o  go much farther, we must specialize T ,  
5 J  

which we do i n  Sec. IV. 
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We close this section w i t h  a proof that the situation in 

reference 1, with only one monochromatic wave i n  zeroth order, 

always leads t r i v i a l l y  t o  closure. In ref 1, we had 

w i t h  ko E, = A2 , and a l l  other a(kj, L j )  = 0. FromF(f('),  a f ( O ) / a E ,  a d o ) / a n  ) 

we get terms of the type 

+ ...) ko 2 (8) # 0 only i f  k j  = (n l  + n Fk, L, 
J J  

a = (nl + "2 + ...) g o  
9 

2 2 If k3&j = A , and k d o  = A , t h i s  implies 

2 (nl + "2 + ...) = I ,  

or  (k ) =+(h, go), so that we can never be led out. 3' 3 
bo, go>, (-ko9 -go) by any form of 3 

ide the set 

111. "E ROLE OF B0UNDA.W CONDITIONS 

From (3 )  and (4), it is clear t ha t  + ( a )  and ( a )  are not 
3 3  J 5 

completely independent, nor are ck. a 

ex i s t s  between them is largely determined by boundary conditions, which w e  now 

(a) and % (a). Such canneetion as 
J j  j j  

pause t o  discuss. 
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In  Sec. I, we limited ourselves t o  the case where  f and i ts  

normal derivative are given as periodic along the x o r  t axes. It i s  

clear  from the form of Eq. (1) that periodicity, once given, w i l l  be 

preserved throughout the rest of the region of i n t e re s t  i n  the x t  plane 

i n  botb cases. Inspection of our solution also makes it obvious t h a t  it 

i s  the interval  of periodicity which fixes the spectra of the basic vectors, 

From these considerations, it follows that i f  the boundary is  

the x axis and the  interval  of periodicity i s  L 

Similarly, i f  the periodicity is  i n  t with period T, 

kj + a = 2 njc/L, 
3 
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j = f l,* 2, 0 0 0  

I n  both cases, kJ + II i s  the frequency of the j t h  zeroth order 
j 

mode, and (k 

2€Ck 

is  tDi.  j t h  "wave number shift". 

- g.)/c is  the wave number. In  the former case, we call 
j J  

g the jth "frequency shift:: and i n  the la t te r  case, 2c% a /c 
J j  j j  

In both cases, the program is, in  words, the following. Determine 

the a (k.,II ) and JI (k 

Compute the Fk a 

II ) over the boundary f r o m  the boundary conditions. 

R.) and #(k. ,g  ) *  From Eq, (4) 
J j  j' 3 

(a)  there, using the a (k 
j' J J j  3 3  

and the first of Eqs. (14), we then  hawe a system of d i f fe ren t ia l  equations 

f o r  the a (k , g  ) which may o r  may not have a simple solution. Assuming that j 3  
t h i s  system is  solvable for  the a (k ,E.), we can then solve the second of 

Eqs. (14) f o r  the frequency o r  wave number shif ts ,  as the case may be. W e  

then solve Eqs. ( 3 )  and ( 5 )  f o r  the $(K,L). Finally, we determine v1 froin (12), 

subject t o  some boundary conditions. 

j J  

The most convenient s e t  of boundary conditions f o r  v1 is  t o  

choose vl and i ts  normal derivative t o  be zero over the boundary, 

which is  equivalent t o  putting a l l  of f into the zeroth order over the boundary. 

T h i s  is  by no means the only possible split-up, of course. 
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It need not be said t h a t  th is  program is too ambitious t o  

carry out f o r  all 3: and f(o)ls, which is  not surprising, since 

only i n  special cases can the much simpler program f o r  the harmonic 

osc i l la tor  be pushed t o  completion3. It can be carried out f o r  several 

interest ing cases, and we shall now i l l u s t r a t e  t w o  of the simpler of 

these 

IV. TWO TRACTABLE CASES 

A, A Case in  which 3= r<f) only. 

In  t h i s  case, 
I m  Pk j j  

(a)) = 0, all j, so we may pick 

= 0 fo r  a l l  j, and a(k ,R ) = const., a l l  j, This leads 
J j  = Bk R J J  

at  once to 

a l l  j, where 4(k ,i ) is a constant. 
J j  

For definiteness, l e t  us give F and i ts  normal derivative over 

the x axis  i n  the form 
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9 
= d *  dn -no 

The function f must be matched up with the t = 0 value of 

J J  

-11 ) X/C + i4 (k a ) 
- - 1  a(k “ e  ‘k3 3 3’ 3 

k a  j’ J 
3’ .3 

i (k, - A2 /kJ x/c 
In  t h i s  “Fourier series”, the coefficient of e is 

The derivative is  
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3 so that 

Solving (18) and (19) 

which determines a(k , II  ) and 4(k ,II ) f o r  a l l  j. T h i s  therefore determines 
J 3  J j  

$(kj  R ), a l l  j. We assume throughout the r e s t  of t h i s  subsection that we know the ' J  
a's and 4 ' s .  

Now we specialize t o  study the nonlinear e f fec ts  associated with two 

zeroth order travell ing waves i n  the presence of an = - vf3?  v = const. 

(The s i tuat ion i s  then equivalent t o  a stretched s t r ing  imbedded i n  a non- 

l inear  e l a s t i c  medium with the end points fixed, if a concrete physical 

example i s  desired.) We determine, i n  particular,  the frequency sh i f t s  fo r  waves 1 

and 2, with 

f(O) = al cos JI, + % cos $2 (21) 
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where for E = 0 

Closure can be guaranteed by picking (kl/+) + (k2/kl) 8s any irrational  numbr, 

though wesker conditions w i l l  s u f f i c e .  

Computing y(f ( 0 )  1 it is readily seen that the non-vanishing Fm (8) ' 6  we: 
1 



2 2 
(a) [A /kl + kll = (v/8) (3a? + 6 ala2 ) 

a1 - 
%a1 

The computations for a(K,L) for (K,L) outside the basic set of vectors and 

for v1 are completely straightforward, and will not be written out. 

B. A Dissipative Case 

1.2 consider again the travelling waves or Eqs. (21) and (22), but 

now with a frictional dissipation, F = -4~(af/at)~. (The case of linear 

friction, F cc - af/at, is trivial.) Thus 
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The FKL (a) are again readily computed, and a l l  hsve zero real parts,  so that 

the shifts a l l  vanish. The nonvanishing FKL(a) are: 

(K, L? 



2 - u/8 ( 3 0 1  + 6 a 1  a2 

Taking frj-to account (151, we have a1 and 9 developing sccordfng t o  

Eqs. (26) determine the damping of the osc i l la t ions  i n  time as t increases from zero.- 

Since the $ ( k ~ ,  a j )  re ta in  their  simple kj6 

r e s t  of the solution i s  straightforward. It i s  eas i ly  shown from 

damping of a1 and a2 is 0 (l/Ft)., 

+ a rl + const, form f o r  a l l  x,t ,  the 5 
(26) that the 
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